

AY22/23 Sem 2 Wong Kai Jie

Adapted from https://github.com/jovyntls/cheatsheets

BASIC NUMBER THEORY

Definition. A nonzero $p \in \mathbb{Z}$ is **prime** if

(i) $p \neq \pm 1$, and (ii) if p|ab for some $a, b \in \mathbb{Z}$, then p|a or p|b.

```
Definition. A nonzero p \in \mathbb{Z} is irreducible if
```

 $\begin{array}{ll} \text{(i)} & p\neq\pm1\text{, and} \\ \text{(ii)} & \text{if } p=xy \text{ for some } x,y\in\mathbb{Z}\text{, then } x=\pm1 \text{ or } y=\pm1. \end{array}$

Division Algorithm

Let $x, y \in \mathbb{Z}$ with $y \neq 0$. Then there exist unique $q, r \in \mathbb{Z}$ such that $x = qy + r, 0 \leq r < |y|.$

Properties of gcd(x,y):

• gcd(0, y) = |y|

- gcd(x, y) = gcd(x, |y|)
- gcd(cx, cy) = |c| gcd(x, y)
- gcd(x,y) = gcd(x+y,y) = gcd(x-y,y)
- gcd(x,y) = gcd(y,r)

Bezout's Identity

$$\begin{split} & \gcd(a,b) = ax + by, \text{ for some } x,y \in \mathbb{Z}. \\ & \text{Note if } d = \gcd(x,y), d\mathbb{Z} = \{mx + ny \in \mathbb{Z}: m, n \in \mathbb{Z}\} \end{split}$$

Linear congruences

Definition. For $m \in \mathbb{Z}^+$ and $a, b \in \mathbb{Z}$, we write $a \equiv b \pmod{m}$ if m | (a - b).

Fermat's Little Theorem (cf. Euler's Theorem)

Given a positive prime integer p and $n\in\mathbb{Z},$ we have $n^p\equiv n\ (\mathrm{mod}\ p).$

Theorem. Suppose gcd(a, m) = 1. Then for $b \in \mathbb{Z}$,

 $ax \equiv b \pmod{m}$

has a unique solution modulo m.

Chinese Remainder Theorem

Suppose gcd(m, n) = 1. Then the system of congruences

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

has a unique solution modulo mn. Verify that one solution is x = anz + bmy, where my + nz = 1.

GROUPS

Definition. A group (G, *) consists of a set G and a binary operation * on G which satisfy the following axioms: • (G1) (Closure) For all $a, b \in G, a * b \in G$.

• (G2) (Associativity) For all $a, b, c \in G$,

 $(a \ast b) \ast c = a \ast (b \ast c).$

• (G3) (Existence of identity) There exists an element $e \in G$, such that for all $a \in G$,

 $e \ast a = a \ast e = a.$

• (G4) (Existence of inverse) For each $a \in G$, there exists an element $b \in G$ such that

```
a * b = b * a = e.
```

Note:

• The identity element *e* is unique in *G*. • The inverse of an element is unique. • $(a * b)^{-1} = b^{-1} * a^{-1}$. • $\forall n \in \mathbb{Z}, (a^n)^{-1} = (a^{-1})^n$. • $\forall n \in \mathbb{Z}, a^n * a^m = a^{n+m}$. • (Right Cancellation Law) $a * c = b * c \Rightarrow a = b$. • (G1), (G2), (RG3) and (RG4) are sufficient to define a group *G*.

(RG3) (Existence of right identity) There exists an element e ∈ G, such that for all a ∈ G, a * e = a.
(RG4) (Existence of right inverse) For each a ∈ G, there exists an element b ∈ G such that a * b = e.

Examples of groups

Let G be a vector space over a field F and let + be the addition of vectors. Then (G, +) is an abelian group.
(ℚ[×], ×), (ℝ[×], ×), (ℂ[×], ×) are abelian groups.

n-th roots of unity in \mathbb{C} Given $n \in \mathbb{Z}^+$. define

 $u_{-} - \{e^{\frac{2k\pi i}{n}} \cdot k = 0, 1, \dots, n-1\}$

$$\mu_n = \{e \quad n \quad : k \equiv 0, 1, \dots, n-1\}$$

Then (μ_n, \times) is the **cyclic group** of order n.

Klein four-group

 $\mu_2 \times \mu_2$ forms a group of order 4.

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Group isomorphisms

Definition. Let (G, *) and (H, \star) be two groups. If a homomorphism $\phi \colon G \to H$ is bijective, it is a **group** isomorphism. We denote $(G, *) \simeq (H, \star)$.

Note:

- ϕ^{-1} is a group isomorphism - Composing isomorphisms gives an isomorphism

Subgroups

Definition. Let (G, *) be a group. Let $H \subseteq G$ be a nonempty subset. Suppose (H, *) forms a group. Then, (H, *) is a subgroup of (G, *).

Note:

- (I, +) is a subgroup of (Z, +) ⇔ I = dZ for some non-negative integer d.
 In particular, if d ≠ 0, d is the smallest positive integer in I.
- (μ_m, \times) is a subgroup of $(\mu_n, \times) \Leftrightarrow m|n$.
- (H, *) is a subgroup if and only if:
- (S1) For all $a, b \in H$, we have $a * b \in H$. • (S2) For all $a \in H$, we have $a^{-1} \in H$.
- Alternatively:
- (S) For all $a, b \in H$, we have $a * b^{-1} \in H$.
- For nonempty finite subset H, (S1) is sufficient.
- If $\{(H_i, *) : i \in I\}$ is a collection of subgroups of (G, *), then

$$(\bigcap_{i\in I}H_i,*)$$

is a subgroup of (G, *).

SYMMETRIC GROUPS

Definition. Let $X = \{1, 2, \dots, n\}$ and

$$S_n = \{f \colon X \to X \colon f \text{ is a bijection.}\}.$$

The pair (S_n, \circ) is called the **symmetric group** or **permutation group** on n letters.

A general element $k \in S_n$ could be denoted by

$$k = \begin{pmatrix} 1 & 2 & \dots & n \\ k(1) & k(2) & \dots & k(n) \end{pmatrix}$$

For any arbitrary set $Y = \{y_1, y_2, \dots, y_n\}$, we denote

 $S_Y = \{f \colon Y \to Y \colon \text{ f is a bijection.}\}.$

Then $(S_n, \circ) \simeq (S_Y, \circ)$.

• Explicitly, let $T: X \to Y$ be the bijection given by $T(i) = y_i$. Then $\phi: S_n \to S_Y$ given by

$$\phi(f) = T \circ f \circ T^{-1}$$

is an isomorphism.

Permutation matrices

Definition. Let $\{e_1, e_2, \dots, e_n\}$ be the standard basis of \mathbb{R}^n . An *n* by *n* **permutation matrix** is a matrix of the form

$$F = \begin{pmatrix} | & | & \dots & | \\ \mathbf{e}_{i_1} & \mathbf{e}_{i_2} & \dots & \mathbf{e}_{i_n} \\ | & | & \dots & | \end{pmatrix}$$

where $\{e_1,e_2,\ldots,e_n\}$ is a permutation of the standard basis vectors.

Let S''_n be the set of all n by n permutation matrices. Then (S''_n, \times) forms a group, where $(S''_n, \times) \simeq (S_n, \circ)$.

Note:

• $det(F) = \pm 1$.

• $\forall f \in S_n, sgn(f) = det(\phi(f))$ where ϕ is the obvious group isomorphism $S_n \to S''_n$.

Cyclic notations

- Let $f \in S_n$. Then
- (i) $f = h_1 \circ h_2 \circ \ldots \circ h_r$ can be factorised into a product of mutually disjoint cycles.
- (ii) The factorisation in (i) is unique up to an ordering of the product of cycles.

Note:

• If h, h' are disjointed cycles, $h \circ h' = h' \circ h$. • Let $c = (i_1 i_2 \dots i_r)$ and $f \in S_n$. Then

$$f \circ c \circ f^{-1} = (f(i_1)f(i_2)\dots f(i_r)).$$

In particular, it is an *r*-cycle.

- $c^{-1} = (i_r i_{r-1} \dots i_1).$
- Let $f = c_1 c_2 \dots c_k \in S_n$ where c_i are mutually disjointed cycles of orders r_i . Then
- $f^m = c_1^m c_2^m \dots c_k^m$.
- $f^m = e \Leftrightarrow lcm(r_1, r_2, \dots, r_k) | m.$

• $(i_1 \dots i_r) = (i_1 i_r)(i_1 i_{r-1}) \dots (i_1 i_2)$

• For any $f \in S_n$, f is a product of transpositions.

 $(i_1i_2\ldots i_r) = (i_1i_r)(i_1i_{r-1})\ldots (i_1i_3)(i_1i_2).$

• (ab)(cd) = (acb)(cda). Thus every even permutation in

 $P(x_1,\ldots,x_n) = \prod_{1 \le i \le j \le n} (x_i - x_j),$

 $P_f(x_1, \ldots, x_n) = P(x_{f(1)}, \ldots, x_{f(n)})$

 $P_f(x_1,\ldots,x_n) = sqn(f)P(x_1,\ldots,x_n)$

 $sqn(f \circ h) = sqn(f)sqn(h)$. An element $f \in S_n$ is called

an *even* (respectively *odd*) permutation if sqn(f) = 1

Transpositions

In particular,

Sign character

Then we write

 S_n is a product of 3-cycles.

Let $f \in S_n$. Define the polynomials

where $sqn(f) = \pm 1$. Note that

(respectively sgn(f) = -1).

Note:

Definition. A cycle $h \in S_n$ of the form h = (ij) is called a transposition.

SYMMETRIC GROUPS (cont'd)

Note:

• A transposition is an odd permutation, i.e. sqn(ij) = -1. • $f \in S_n$ is even $\Leftrightarrow f$ is a produce of an even number of transpositions.

Alternating group

Define the alternating group A_n as

$$A_n = \{ f \in S_n : sgn(f) = 1 \} = \{ f \in S_n : f \text{ even} \}.$$

Then (A_n, \circ) is a subgroup of (S_n, \circ) .

- $|A_n| = n!/2.$
- Let H be a subgroup of S_n which contains all the 3-cycles of S_n . Then H is either A_n or S_n .

Cayley's Theorem

Every finite group (G, *) of order n is isomorphic to a subgroup of (S_n, \circ) .

• Let (μ_p, \times) be the cyclic subgroup of order p, where p is prime. If (μ_n, \times) is isomorphic to a subgroup of S_m , then p < m.

LAGRANGE'S THEOREM

Cosets

Let G be a group and H be a subgroup. Let $x, y, z \in G$. • If $z \in xH$, then zH = xH.

```
• If xH \cap yH \neq \emptyset, then xH = yH.
```

• The left cosets $\{xH : x \in G\}$ form a partition of G.

• For every coset xH is of the same cardinality as H.

• $k\mathbb{Z}$ is a subgroup of \mathbb{Z} , and for $a \in \mathbb{Z}$, the cosets $a + k\mathbb{Z}$ form a disiointed union

$$\mathbb{Z} = k\mathbb{Z} \bigsqcup (1 + k\mathbb{Z}) \bigsqcup \dots \bigsqcup (k - 1 + k\mathbb{Z})$$

- If H, K are subgroups of G, and $x \in G$, then $x(H \cup K) = xH \cup xK.$
- Let $x, y \in G$. Then $xH \cup yK$ is either the empty set or equal to $c(H \cup K)$ for some $c \in G$.

Lagrange's Theorem

Let G be a finite group and H be a subgroup. Then |H|divides |G|. Furthermore [G: H] = |G/H| = |G|/|H|.

GENERATORS OF GROUPS

Let G be a group and X be a subset of G.

Definition. Let $S = \{H : H \text{ subgroup of } G, X \subseteq H\}$. We define

$$\langle X \rangle = \bigcap_{H \in S} H.$$

as the subgroup of G generated by X.

• $\langle X \rangle$ is the *smallest subgroup* of G containing X.

· We say that a group is finitely generated if it is generated by some finite subset.

Definition. A *word* on *X* is either *e* or a finite product $x_1^{r_1}x_2^{r_2}\ldots x_n^{r_n}\in G$ where $x_i\in X$ and $r_i\in\mathbb{Z}$. Let W be the set of words on X. Then $W = \langle X \rangle$.

Cyclic groups

Let G be a group and $a \in G$.

• Denote o(a) = r, where r is the smallest positive integer such that $a^r = e$ • $\langle a \rangle = \{e, a, a^2, \dots, a^{r-1}\}$ is a cyclic group of order r. • If G is a finite group of order p where p is prime. If $a \neq e$,

then $G = \langle a \rangle$.

HOMOMORPHISMS

Definition. Let (G, *) and (H, \star) be two groups. A function $\phi: G \to H$ is called a group homomorphism if $\phi(x * y) = \phi(x) \star \phi(y)$

for all $x, y \in G$.

Note:

· Composing homomorphisms gives a homomorphism. • $\phi(e_G) = e_H.$

$$\phi(g^{-1}) = \phi(g)^{-1}$$

• The image $\phi(G)$ is a subgroup of (H, \star) . • Let H' be a subgroup of H. Then $\phi^{-1}(H')$ is a subgroup of G.

Definition. The **kernel** of ϕ is defined as

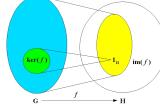
$$\ker \phi = \phi^{-1}(e_H) = \{ g \in G : \phi(g) = e_H \}.$$

Note:

• The kernel K is a *normal* subgroup of G. • For all $q_0 \in G$, we have

$$\{g \in G : \phi(g) = \phi(g_0)\} = g_0 K = K g_0.$$

• Thus ϕ injective $\Leftrightarrow ker\phi = \{e_G\}$.



Definition. Let $K = \ker \phi$ be the kernel of ϕ . We define $\mathbf{Sub}(G, K) = \{G' : G' \text{ subgroup of } G, K \subseteq G\}$ and

 $\mathbf{Sub}(H) = \{H' : H' \text{ subgroup of } H\}.$

We define a function Φ : $\mathbf{Sub}(G, K) \to \mathbf{Sub}(H)$ by

- $\Phi(G') = \phi(G')$ where $G' \in \mathbf{Sub}(G, K)$. • If ϕ is a **surjective** homomorphism, then Φ is a bijection.
- Verify that Φ is well-defined.

NORMAL SUBGROUPS

Definition. Let G be a group and N be a subgroup. Then $N \triangleleft G$ if for all $n \in N$ and $q \in G$, $qnq^{-1} \in N$. • $\bigcap_{i \in I} N_i$ is a normal subgroup of G. • For every subgroup G' of $G, N \cap G'$ is a normal

subaroup of G. The following statements are equivalent:

(i) The subgroup N is normal, i.e.

 $\forall n \in N, a \in G, ana^{-1} \in N.$ N

(ii) For all
$$a \in G$$
 $aNa^{-1} =$

(iii) For all
$$g \in G$$
, $gN = Ng$.

(iv) For all
$$g, g' \in G, (gN)(g'N) = (gg')N$$
.

Simple groups

Definition. A group *G* is **simple** if its normal subgroups are only its trivial normal subgroups $\{e\}$ and G. • For $n \neq 4$, the alternating group A_4 is simple.

QUOTIENT GROUPS

Definition. Let (G, *) be a group and let K be a normal subgroup. Then define a binary operation \diamond on G/K by $(g_1K)\diamond(g_2K) = g_1g_2K.$

(i) $(G/K, \diamond)$ forms the **quotient group** of G by K. (ii) The function $\pi: (G, *) \to (G/K, \diamond)$ defined by $\pi(q) = qK$ is a surjective group homomorphism. (iii) ker $\pi = K$.

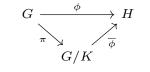
ISOMORPHISM THEOREMS

First Isomorphism Theorem

Let $\phi \colon (G, *) \to (H, \star)$ be a surjective group homomorphism. Let K be the kernel of ϕ . Then the function $\overline{\phi} \colon (G/K, \diamond) \to (H, \star)$ given by

 $\overline{\phi}(qK) = \phi(q)$

is a well-defined group isomorphism. (In general, if ϕ is not surjective, we can simply replace H by the image $\phi(G)$.



Second Isomorphism Theorem

Let G be a group, M be a subgroup of G, and K be a normal subgroup of G. We need two propositions:

- MK = KM and it is a subgroup of G.
- The function $\phi: M \to MK/K$ defined by $\phi(m) = mK$ is a surjective group homomorphism.
- The kernel of ϕ is $M \cap K$ (In particular it is a normal subgroup of M). Then.

 $M/(M \cap K) \simeq (MK)/K.$

• This is a result of the First Isomorphism Theorem, as MK/K is isomorphic to $M / \ker \phi = M / M \cap K$.

Third Isomorphism Theorem

Let G be a group, and M, K be normal subgroups of G such that $K \subseteq M$. Then M/K is a normal subgroup of G/K and

$$(G/K)/(M/K) \simeq G/M$$

• The condition $K \subseteq M$ is not very important for otherwise, we replace K by $M \cap K$ which is a normal subgroup of G contained in M.

MORE NUMBER THEORY

If n = 1, then we set $\Phi(1) = 1$. If $n \ge 2$, then

 $\Phi(n) = \{ x \in \mathbb{Z} : 0 \le x \le n, \gcd(x, n) = 1 \}.$

• The pair $(\Phi(n), *)$ is a group, where * denotes multiplication module n

Euler's totient function

Let $\varphi(n)$ denote the number of elements in $\Phi(n)$.

Euler's Theorem Suppose gcd(x, n) = 1. Then

 $x^{\varphi(n)} = 1 \pmod{n}.$

Product formula

Suppose $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ is a prime factorization. Then $\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_k}\right)$ $= \varphi(p_1^{r_1})\varphi(p_2^{r_2})\dots\varphi(p_k^{r_k}).$

AUTOMORPHISM GROUPS

Definition. An isomorphism $\phi: G \to G$ is called an automorphism of G. We denote the set of automorphism of G by

$$\operatorname{Aut}(G) = \{\phi \colon G \to G : \phi \text{ is an isomorphism.} \}$$

 $\phi_a(x) = qxq^{-1}$

is an inner automorphism of G. Let $Inn(G) = \{\phi_a : q \in G\}$ be

The map $T: G \to \text{Inn}(G)$ given by $T(q) = \phi_q$ is a surjective

 $Z(G) = \{ z \in G : gz = zg \text{ for all } g \in G \}.$

 $G/Z(G) \simeq \operatorname{Inn}(G).$

Definition. Let G be a finite group of order n, and p be a prime

Let G be a group of order n, and p be a prime divisor of n.

divisor of n. Let H be a subgroup of order p^e . Then H is called a

p-subgroup of G. If $p^e || n$, then H is called a Sylow *p*-subgroup of

Definition. Let P be a subgroup of G. Let $q \in G$. Then qPq^{-1} is

• Let P be a Sylow p-subgroup. Then a conjugate qPq^{-1} is also a

Let G be a group of order n. Let $\{P_1, P_2, \ldots, P_n\}$ be all the

(i) Let Q be a p-subgroup of G. Then $Q \subseteq P_i$ for some

(ii) If Q is a Sylow p-subgroup of G, then $Q = P_i$ for some

(iii) Let r denote the number of Sylow p-subgroups of G. Then

Let P be a Sylow p-subgroup of a finite group G. Then P is a

normal subgroup if and only if P is the unique Sylow p-subgroup of

 $r \equiv 1 \pmod{p}$ and

r divides [G:P].

distinct conjugates of a Sylow *p*-subgroup $P = P_1$.

aroup homomorphism whose kernel is the *center* of the aroup

• The pair $(Aut(G), \circ)$ forms a group.

By the first isomorphism theorem, we have

Suppose p^e divides n but p^{e+1} does not divide n.

SYLOW THEOREMS

Alternatively $n = p^e m$ where $p \nmid m$.

Then G contains a Sylow p-subgroup.

a subgroup of G called a *conjugate* of P.

If $p^d | n$, then G contains a subgroup of order p^d .

the set of inner automorphism.

• $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$.

Notation

G.

Corollary

Theorem

Corollarv

G.

We write $p^e || n$.

First Sylow Theorem

Sylow *p*-subgroup.

 $i \in \{1, \ldots, r\}.$

 $i \in \{1, \ldots, r\}.$

Definition. Let $g \in G$, then $\phi_g : G \to G$ given by