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BASIC NUMBER THEORY
Definition. A nonzero p ∈ Z is prime if
(i) p ̸= ±1, and
(ii) if p|ab for some a, b ∈ Z, then p|a or p|b.

Definition. A nonzero p ∈ Z is irreducible if
(i) p ̸= ±1, and
(ii) if p = xy for some x, y ∈ Z, then x = ±1 or y = ±1.

Division Algorithm
Let x, y ∈ Z with y ̸= 0. Then there exist unique q, r ∈ Z
such that

x = qy + r, 0 ≤ r < |y|.

Properties of gcd(x,y):
• gcd(0, y) = |y|
• gcd(x, y) = gcd(x, |y|)
• gcd(cx, cy) = |c| gcd(x, y)
• gcd(x, y) = gcd(x+ y, y) = gcd(x− y, y)
• gcd(x, y) = gcd(y, r)

Bezout’s Identity
gcd(a, b) = ax+ by, for some x, y ∈ Z.
Note if d = gcd(x, y), dZ = {mx+ ny ∈ Z : m,n ∈ Z}

Linear congruences
Definition. For m ∈ Z+ and a, b ∈ Z, we write
a ≡ b (mod m) if m|(a− b).

Fermat’s Little Theorem (cf. Euler’s Theorem)
Given a positive prime integer p and n ∈ Z, we have
np ≡ n (mod p).

Theorem. Suppose gcd(a,m) = 1. Then for b ∈ Z,

ax ≡ b (mod m)

has a unique solution modulo m.

Chinese Remainder Theorem
Suppose gcd(m,n) = 1. Then the system of congruences

x ≡ a (mod m)

x ≡ b (mod n)

has a unique solution modulo mn.
Verify that one solution is x = anz + bmy, where
my + nz = 1.

GROUPS
Definition. A group (G, ∗) consists of a set G and a
binary operation ∗ on G which satisfy the following axioms:
• (G1) (Closure) For all a, b ∈ G, a ∗ b ∈ G.
• (G2) (Associativity) For all a, b, c ∈ G,

(a ∗ b) ∗ c = a ∗ (b ∗ c).

• (G3) (Existence of identity) There exists an element
e ∈ G, such that for all a ∈ G,

e ∗ a = a ∗ e = a.

• (G4) (Existence of inverse) For each a ∈ G, there exists
an element b ∈ G such that

a ∗ b = b ∗ a = e.

Note:
• The identity element e is unique in G.
• The inverse of an element is unique.
• (a ∗ b)−1 = b−1 ∗ a−1.
• ∀n ∈ Z, (an)−1 = (a−1)n.
• ∀n ∈ Z, an ∗ am = an+m.
• (Right Cancellation Law) a ∗ c = b ∗ c ⇒ a = b.
• (G1), (G2), (RG3) and (RG4) are sufficient to define a

group G.
• (RG3) (Existence of right identity) There exists an

element e ∈ G, such that for all a ∈ G, a ∗ e = a.
• (RG4) (Existence of right inverse) For each a ∈ G,

there exists an element b ∈ G such that a ∗ b = e.

Examples of groups
• Let G be a vector space over a field F and let + be the

addition of vectors. Then (G,+) is an abelian group.
• (Q×,×), (R×,×), (C×,×) are abelian groups.

n-th roots of unity in C
Given n ∈ Z+, define

µn = {e
2kπi
n : k = 0, 1, . . . , n− 1}

Then (µn,×) is the cyclic group of order n.

Klein four-group
µ2 × µ2 forms a group of order 4.

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Group isomorphisms
Definition. Let (G, ∗) and (H, ⋆) be two groups. If a
homomorphism ϕ : G → H is bijective, it is a group
isomorphism. We denote (G, ∗) ≃ (H, ⋆).

Note:
• ϕ−1 is a group isomorphism
• Composing isomorphisms gives an isomorphism

Subgroups

Definition. Let (G, ∗) be a group. Let H ⊆ G be a
nonempty subset. Suppose (H, ∗) forms a group. Then,
(H, ∗) is a subgroup of (G, ∗).

Note:
• (I,+) is a subgroup of (Z,+) ⇔ I = dZ for some

non-negative integer d.
• In particular, if d ̸= 0, d is the smallest positive integer

in I.
• (µm,×) is a subgroup of (µn,×) ⇔ m|n.
• (H, ∗) is a subgroup if and only if:

• (S1) For all a, b ∈ H, we have a ∗ b ∈ H.
• (S2) For all a ∈ H, we have a−1 ∈ H.

• Alternatively:
• (S) For all a, b ∈ H, we have a ∗ b−1 ∈ H.

• For nonempty finite subset H, (S1) is sufficient.
• If {(Hi, ∗) : i ∈ I} is a collection of subgroups of (G, ∗),

then
(
⋂
i∈I

Hi, ∗)

is a subgroup of (G, ∗).

SYMMETRIC GROUPS

Definition. Let X = {1, 2, . . . , n} and

Sn = {f : X → X : f is a bijection.}.

The pair (Sn, ◦) is called the symmetric group or
permutation group on n letters.

A general element k ∈ Sn could be denoted by

k =

(
1 2 . . . n

k(1) k(2) . . . k(n)

)

For any arbitrary set Y = {y1, y2, . . . , yn}, we denote

SY = {f : Y → Y : f is a bijection.}.

Then (Sn, ◦) ≃ (SY , ◦).

• Explicitly, let T : X → Y be the bijection given by
T (i) = yi. Then ϕ : Sn → SY given by

ϕ(f) = T ◦ f ◦ T−1

is an isomorphism.

Permutation matrices
Definition. Let {e1, e2, . . . , en} be the standard basis of
Rn. An n by n permutation matrix is a matrix of the form

F =

 | | . . . |
ei1 ei2 . . . ein
| | . . . |


where {e1, e2, . . . , en} is a permutation of the standard
basis vectors.
Let S′′

n be the set of all n by n permutation matrices. Then
(S′′

n ,×) forms a group, where (S′′
n ,×) ≃ (Sn, ◦).

Note:
• det(F ) = ±1.
• ∀f ∈ Sn, sgn(f) = det(ϕ(f)) where ϕ is the obvious

group isomorphism Sn → S′′
n .

Cyclic notations
Let f ∈ Sn. Then
(i) f = h1 ◦ h2 ◦ . . . ◦ hr can be factorised into a product

of mutually disjoint cycles.
(ii) The factorisation in (i) is unique up to an ordering of the

product of cycles.
Note:
• If h, h′ are disjointed cycles, h ◦ h′ = h′ ◦ h.
• Let c = (i1i2 . . . ir) and f ∈ Sn. Then

f ◦ c ◦ f−1 = (f(i1)f(i2) . . . f(ir)).

In particular, it is an r-cycle.
• c−1 = (irir−1 . . . i1).
• Let f = c1c2 . . . ck ∈ Sn where ci are mutually disjointed

cycles of orders ri. Then
• fm = cm1 cm2 . . . cmk .
• fm = e ⇔ lcm(r1, r2, . . . , rk)|m.

Transpositions
Definition. A cycle h ∈ Sn of the form h = (ij) is called a
transposition.

Note:
• (i1 . . . ir) = (i1ir)(i1ir−1) . . . (i1i2)
• For any f ∈ Sn, f is a product of transpositions.

• In particular,
(i1i2 . . . ir) = (i1ir)(i1ir−1) . . . (i1i3)(i1i2).

• (ab)(cd) = (acb)(cda). Thus every even permutation in
Sn is a product of 3-cycles.

Sign character
Let f ∈ Sn. Define the polynomials

P (x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj),

Pf (x1, . . . , xn) = P (xf(1), . . . , xf(n))

Then we write

Pf (x1, . . . , xn) = sgn(f)P (x1, . . . , xn)

where sgn(f) = ±1. Note that
sgn(f ◦ h) = sgn(f)sgn(h). An element f ∈ Sn is called
an even (respectively odd) permutation if sgn(f) = 1
(respectively sgn(f) = −1).

https://github.com/jovyntls/cheatsheets


SYMMETRIC GROUPS (cont’d)
Note:
• A transposition is an odd permutation, i.e. sgn(ij) = −1.
• f ∈ Sn is even ⇔ f is a produce of an even number of

transpositions.

Alternating group
Define the alternating group An as

An = {f ∈ Sn : sgn(f) = 1} = {f ∈ Sn : f even}.

Then (An, ◦) is a subgroup of (Sn, ◦).
• |An| = n!/2.
• Let H be a subgroup of Sn which contains all the 3-cycles

of Sn. Then H is either An or Sn.

Cayley’s Theorem
Every finite group (G, ∗) of order n is isomorphic to a
subgroup of (Sn, ◦).
• Let (µp,×) be the cyclic subgroup of order p, where p is

prime. If (µp,×) is isomorphic to a subgroup of Sm, then
p ≤ m.

LAGRANGE’S THEOREM
Cosets
Let G be a group and H be a subgroup. Let x, y, z ∈ G.
• If z ∈ xH, then zH = xH.
• If xH ∩ yH ̸= ∅, then xH = yH.
• The left cosets {xH : x ∈ G} form a partition of G.
• For every coset xH is of the same cardinality as H.
• kZ is a subgroup of Z, and for a ∈ Z, the cosets a+ kZ

form a disjointed union

Z = kZ
⊔

(1 + kZ)
⊔

. . .
⊔

(k − 1 + kZ)

• If H,K are subgroups of G, and x ∈ G, then
x(H ∪K) = xH ∪ xK.
• Let x, y ∈ G. Then xH ∪ yK is either the empty set or

equal to c(H ∪K) for some c ∈ G.

Lagrange’s Theorem
Let G be a finite group and H be a subgroup. Then |H|
divides |G|.
Furthermore [G : H] = |G/H| = |G|/|H|.

GENERATORS OF GROUPS
Let G be a group and X be a subset of G.

Definition. Let S = {H : H subgroup of G,X ⊆ H}. We
define

⟨X⟩ =
⋂

H∈S

H.

as the subgroup of G generated by X.
• ⟨X⟩ is the smallest subgroup of G containing X.
• We say that a group is finitely generated if it is generated

by some finite subset.

Definition. A word on X is either e or a finite product
xr1
1 xr2

2 . . . xrn
n ∈ G where xi ∈ X and ri ∈ Z. Let W be

the set of words on X. Then W = ⟨X⟩.

Cyclic groups
Let G be a group and a ∈ G.
• Denote o(a) = r, where r is the smallest positive integer

such that ar = e.
• ⟨a⟩ = {e, a, a2, . . . , ar−1} is a cyclic group of order r.
• If G is a finite group of order p where p is prime. If a ̸= e,

then G = ⟨a⟩.

HOMOMORPHISMS
Definition. Let (G, ∗) and (H, ⋆) be two groups. A
function ϕ : G → H is called a group homomorphism if

ϕ(x ∗ y) = ϕ(x) ⋆ ϕ(y)

for all x, y ∈ G.

Note:
• Composing homomorphisms gives a homomorphism.
• ϕ(eG) = eH .
• ϕ(g−1) = ϕ(g)−1

• The image ϕ(G) is a subgroup of (H, ⋆).
• Let H′ be a subgroup of H. Then ϕ−1(H′) is a subgroup

of G.

Definition. The kernel of ϕ is defined as
kerϕ = ϕ−1(eH) = {g ∈ G : ϕ(g) = eH}.

Note:
• The kernel K is a normal subgroup of G.
• For all g0 ∈ G, we have

{g ∈ G : ϕ(g) = ϕ(g0)} = g0K = Kg0.

• Thus ϕ injective ⇔ kerϕ = {eG}.

Definition. Let K = kerϕ be the kernel of ϕ. We define
Sub(G,K) = {G′ : G′ subgroup of G,K ⊆ G} and

Sub(H) = {H′ : H′ subgroup of H}.
We define a function Φ: Sub(G,K) → Sub(H) by
Φ(G′) = ϕ(G′) where G′ ∈ Sub(G,K).
• If ϕ is a surjective homomorphism, then Φ is a bijection.

• Verify that Φ is well-defined.

NORMAL SUBGROUPS
Definition. Let G be a group and N be a subgroup. Then
N ◁G if for all n ∈ N and g ∈ G, gng−1 ∈ N .
•
⋂

i∈I Ni is a normal subgroup of G.
• For every subgroup G′ of G, N ∩G′ is a normal

subgroup of G.
The following statements are equivalent:
(i) The subgroup N is normal, i.e.

∀n ∈ N, g ∈ G, gng−1 ∈ N.
(ii) For all g ∈ G, gNg−1 = N .
(iii) For all g ∈ G, gN = Ng.
(iv) For all g, g′ ∈ G, (gN)(g′N) = (gg′)N .

Simple groups
Definition. A group G is simple if its normal subgroups
are only its trivial normal subgroups {e} and G.
• For n ̸= 4, the alternating group A4 is simple.

QUOTIENT GROUPS
Definition. Let (G, ∗) be a group and let K be a normal
subgroup. Then define a binary operation ⋄ on G/K by
(g1K) ⋄ (g2K) = g1g2K.
(i) (G/K, ⋄) forms the quotient group of G by K.
(ii) The function π : (G, ∗) → (G/K, ⋄) defined by

π(g) = gK is a surjective group homomorphism.
(iii) kerπ = K.

ISOMORPHISM THEOREMS
First Isomorphism Theorem
Let ϕ : (G, ∗) → (H, ⋆) be a surjective group
homomorphism. Let K be the kernel of ϕ. Then the
function ϕ : (G/K, ⋄) → (H, ⋆) given by

ϕ(gK) = ϕ(g)

is a well-defined group isomorphism. (In general, if ϕ is not
surjective, we can simply replace H by the image ϕ(G)).

G H

G/K

ϕ

π
ϕ

Second Isomorphism Theorem
Let G be a group, M be a subgroup of G, and K be a normal
subgroup of G. We need two propositions:
• MK = KM and it is a subgroup of G.
• The function ϕ : M → MK/K defined by ϕ(m) = mK is a

surjective group homomorphism.
• The kernel of ϕ is M ∩ K (In particular it is a normal subgroup of
M ). Then,

M/(M ∩ K) ≃ (MK)/K.

• This is a result of the First Isomorphism Theorem, as MK/K is
isomorphic to M/ kerϕ = M/M ∩ K.

Third Isomorphism Theorem
Let G be a group, and M,K be normal subgroups of G such that
K ⊆ M . Then M/K is a normal subgroup of G/K and

(G/K)/(M/K) ≃ G/M.

• The condition K ⊆ M is not very important for otherwise, we
replace K by M ∩ K which is a normal subgroup of G contained
in M .

MORE NUMBER THEORY
If n = 1, then we set Φ(1) = 1. If n ≥ 2, then

Φ(n) = {x ∈ Z : 0 ≤ x ≤ n, gcd(x, n) = 1}.

• The pair (Φ(n), ∗) is a group, where ∗ denotes multiplication
module n.

Euler’s totient function
Let φ(n) denote the number of elements in Φ(n).

Euler’s Theorem
Suppose gcd(x, n) = 1. Then

x
φ(n) ≡ 1 (mod n).

Product formula
Suppose n = p

r1
1 p

r2
2 . . . p

rk
k is a prime factorization. Then

φ(n) = n

(
1 −

1

p1

)(
1 −

1

p2

)
. . .

(
1 −

1

pk

)
= φ(p

r1
1 )φ(p

r2
2 ) . . . φ(p

rk
k ).

AUTOMORPHISM GROUPS
Definition. An isomorphism ϕ : G → G is called an
automorphism of G. We denote the set of automorphism of G by

Aut(G) = {ϕ : G → G : ϕ is an isomorphism.}

• The pair (Aut(G), ◦) forms a group.

Definition. Let g ∈ G, then ϕg : G → G given by

ϕg(x) = gxg
−1

is an inner automorphism of G. Let Inn(G) = {ϕg : g ∈ G} be
the set of inner automorphism.
• Inn(G) ◁ Aut(G).

The map T : G → Inn(G) given by T (g) = ϕg is a surjective
group homomorphism whose kernel is the center of the group

Z(G) = {z ∈ G : gz = zg for all g ∈ G}.

By the first isomorphism theorem, we have

G/Z(G) ≃ Inn(G).

SYLOW THEOREMS
Notation
Suppose pe divides n but pe+1 does not divide n.
We write pe||n.
Alternatively n = pem where p ∤ m.

Definition. Let G be a finite group of order n, and p be a prime
divisor of n. Let H be a subgroup of order pe. Then H is called a
p-subgroup of G. If pe||n, then H is called a Sylow p-subgroup of
G.

First Sylow Theorem
Let G be a group of order n, and p be a prime divisor of n.
Then G contains a Sylow p-subgroup.

Corollary
If pd|n, then G contains a subgroup of order pd.

Definition. Let P be a subgroup of G. Let g ∈ G. Then gPg−1 is
a subgroup of G called a conjugate of P .
• Let P be a Sylow p-subgroup. Then a conjugate gPg−1 is also a

Sylow p-subgroup.

Theorem
Let G be a group of order n. Let {P1, P2, . . . , Pr} be all the
distinct conjugates of a Sylow p-subgroup P = P1.
(i) Let Q be a p-subgroup of G. Then Q ⊆ Pi for some

i ∈ {1, . . . , r}.
(ii) If Q is a Sylow p-subgroup of G, then Q = Pi for some

i ∈ {1, . . . , r}.
(iii) Let r denote the number of Sylow p-subgroups of G. Then

r ≡ 1 (mod p) and
r divides [G : P ].

Corollary
Let P be a Sylow p-subgroup of a finite group G. Then P is a
normal subgroup if and only if P is the unique Sylow p-subgroup of
G.
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