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BASIC NUMBER THEORY

Definition. A nonzero p € Z is prime if

(i) p+# £1,and
(ii) if p|ab for some a, b € Z, then p|a or plb.

Definition. A nonzero p € Z is irreducible if

(i) p# %1, and
(i) ifp=ayforsomez,y € Z, thenzx = 1 ory = +1.

Division Algorithm
Let z, y € Z with y # 0. Then there exist unique ¢, € Z
such that

z=qy+r,0<r<lyl|

Properties of gcd(x,y):

* ged(0,y) = |y

* ged(z,y) = ged(w, |y|)

* ged(cz, cy) = |c| ged(z, y)

* ged(w,y) = ged(z + y,y) = ged(z — v, )
* ged(z, y) = ged(y, )

Bezout’s Identity

ged(a, b) = ax + by, for some z,y € Z.

Note if d = ged(z, y), dZ = {mz +ny € Z: m,n € Z}
Linear congruences

Definition. Form € Z1 and a, b € Z, we write
a = b (mod m) if m|(a —b).

Fermat’s Little Theorem (cf. Euler’s Theorem)
Given a positive prime integer p and n € Z, we have
nP = n (mod p).

Theorem. Suppose gcd(a, m) = 1. Then forb € Z,
ar = b (mod m)
has a unique solution modulo m.
Chinese Remainder Theorem
Suppose ged(m, n) = 1. Then the system of congruences

z = a (mod m)
z = b (mod n)
has a unique solution modulo mn.

Verify that one solution is z = anz + bmy, where
my +nz = 1.

GROUPS

Definition. A group (G, ) consists of a set G and a
binary operation * on G which satisfy the following axioms:
* (G1) (Closure) For alla,b € G,axb € G.

* (G2) (Associativity) For all a, b, c € G,

(axb)xc=ax(bxc).

+ (G3) (Existence of identity) There exists an element
e € (G, such that foralla € G,

exa=axe=a.

* (G4) (Existence of inverse) For each a € G, there exists
an element b € G such that

axb=bxa=ce.

Note:
« The identity element e is unique in G.
* The inverse of an element is unique.
c(axb) "t =b"lxa"l.
*Vn€Z,(a")" ! = (a" )™
*Vn €Z,a™ xa™ = a™t™.
* (Right Cancellation Law) a xc =bxc = a = b.
* (G1), (G2), (RG3) and (RG4) are sufficient to define a
group G.
» (RG3) (Existence of right identity) There exists an
element e € G, such thatforalla € G,a * e = a.
» (RG4) (Existence of right inverse) For each a € G,
there exists an element b € GG such thata * b = e.

Examples of groups

* Let G be a vector space over a field F' and let + be the
addition of vectors. Then (G, +) is an abelian group.
« (Q@%, x), (R*, x), (C*, x) are abelian groups.

n-th roots of unity in C
Given n € Z1, define

2kmi
n

pun = {e :k=0,1,...,n—1}

Then (pn, X) is the cyclic group of order n.

Klein four-group
u2 X 2 forms a group of order 4.
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Group isomorphisms

Definition. Let (G, *) and (H, %) be two groups. If a
homomorphism ¢: G — H is bijective, it is a group
isomorphism. We denote (G, *) >~ (H, *).

Note:
+ ¢~ 1 is a group isomorphism
« Composing isomorphisms gives an isomorphism

Subgroups

Definition. Let (G, *) be a group. Let H C G be a
nonempty subset. Suppose (H, *) forms a group. Then,
(H, *) is a subgroup of (G, *).

Note:

* (I,+) is a subgroup of (Z,+) < I = dZ for some
non-negative integer d.
* In particular, if d # 0, d is the smallest positive integer

in1.

* (m, x) is a subgroup of (pn, X) < m|n.

 (H, ) is a subgroup if and only if:
* (S1)Foralla,b € H,wehaveaxb e H.
+(S2)Foralla € H,wehave a~' € H.

* Alternatively:
«(S)Foralla,b € H,wehavea+b~' € H.

 For nonempty finite subset H, (S1) is sufficient.

« If {(H;,*) : i € I} is acollection of subgroups of (G, *),

then
(m H;, *)
iel
is a subgroup of (G, *).
SYMMETRIC GROUPS
Definition. Let X = {1,2,...,n} and

Sn={f: X = X: fis abijection.}.

The pair (Sp, o) is called the symmetric group or
permutation group on n letters.

A general element k& € S, could be denoted by
b= 1 2 .. n
Tk k(2) ... k(n)

For any arbitrary set Y = {y1,y2,...,yn}, we denote
Sy ={f: Y = Y: fisabijection.}.

Then (Sn,0) ~ (Sy, o).

« Explicitly, let T': X — Y be the bijection given by
T(i) = y;. Then ¢: S, — Sy given by

¢(f)=TofoT"

is an isomorphism.

Permutation matrices

Definition. Let {e1,e2,...,en} be the standard basis of
R™. An n by n permutation matrix is a matrix of the form

F=le; e, .. e,
| [

where {e1, ez, ...,en} is a permutation of the standard
basis vectors.
Let SJ/ be the set of all n by n permutation matrices. Then

(8!, x) forms a group, where (S)/, x) =~ (Sy, o).

Note:

s det(F) = +1.

* Vf € Sn,sgn(f) = det(¢p(f)) where ¢ is the obvious
group isomorphism S, — S!/.

Cyclic notations

Let f € Sy,. Then

(i) f=hiohgo...oh, canbe factorised into a product
of mutually disjoint cycles.

(i) The factorisation in (i) is unique up to an ordering of the
product of cycles.

Note:

« If h, b/ are disjointed cycles, h o h' = h/ o h.

e Letc = (i1492...4%r) and f € Sn. Then

focof™t=(f(i1)f(i2)... f(ir)).

In particular, it is an r-cycle.

cel = (i7'ir—1 .. 21)

e Let f =cica...ci € Sp Where ¢; are mutually disjointed
cycles of orders r;. Then
o =y e

.
s fM=e<slem(ri,ra,...,r)|m.

Transpositions

Definition. A cycle h € S, of the form h = (ij) is called a
transposition.

Note:
e (i1 .. 0r) = (t18r)(E18r—1) . .. (i12)
* Forany f € Sy, f is a product of transpositions.
« In particular,
(G122 ... ir) = (410r) (F18r—1) . .. (4173) (i1%2).
* (ab)(cd) = (acb)(cda). Thus every even permutation in
Shn, is a product of 3-cycles.

Sign character
Let f € Sy,. Define the polynomials

P(z1,...,2n) = H (x4 — x5),
1<i<j<n
Pf(azl,...,:vn) = P($f(1)77$f(n))

Then we write
Pr(z1,...,an) = sgn(f)P(21, ..

where sgn(f) = £1. Note that

sgn(f o h) = sgn(f)sgn(h). Anelement f € S,, is called
an even (respectively odd) permutation if sgn(f) =1
(respectively sgn(f) = —1).
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SYMMETRIC GROUPS (cont’d)

Note:

« A transposition is an odd permutation, i.e. sgn(ij) = —1.

« f € S, iseven < fis aproduce of an even number of
transpositions.

Alternating group
Define the alternating group A,, as

An ={f €Sn:sgn(f)=1} ={f € Sn : f even}.

Then (An, o) is a subgroup of (S, o).

* |An| =nl/2.

* Let H be a subgroup of S;, which contains all the 3-cycles
of Sy,,. Then H is either A,, or S,,.

Cayley’s Theorem

Every finite group (G, ) of order n is isomorphic to a

subgroup of (Sy,, o).

* Let (up, X) be the cyclic subgroup of order p, where p is
prime. If (1, X) is isomorphic to a subgroup of Sy, then
p<m.

LAGRANGE’S THEOREM

Cosets

Let G be a group and H be a subgroup. Let z,y, z € G.

slfz€axH,thenzH = xH.

clfzHNyH # 0, thenzH = yH.

« The left cosets {« H : « € G} form a partition of G.

« For every coset z H is of the same cardinality as H.

* kZ is a subgroup of Z, and for a € Z, the cosets a + kZ
form a disjointed union

zZ=kz| |1 +k2)| |...| |(k—1+k2)

« If H, K are subgroups of G, and z € G, then
r(HUK) =xHUzK.
* Letz,y € G. Then zH U yK is either the empty set or
equal to ¢(H U K) for some ¢ € G.

Lagrange’s Theorem

Let G be a finite group and H be a subgroup. Then |H|
divides |G|.

Furthermore [G : H| = |G/H| = |G|/|H].

GENERATORS OF GROUPS

Let G be a group and X be a subset of G.
Definition. Let S = {H : H subgroup of G, X C H}. We

define
(X)= ) H
HeS
as the subgroup of G generated by X.
* (X)) is the smallest subgroup of G containing X.
» We say that a group is finitely generated if it is generated
by some finite subset.

Definition. A word on X is either e or a finite product
zta? . ap® € Gwherez; € X andr; € Z. Let W be

the set of words on X. Then W = (X).

Cyclic groups

Let Gbeagroupanda € G.

« Denote o(a) = r, where r is the smallest positive integer
such thata”™ = e.

* (a) = {e,a,a?,...,a" "'} is a cyclic group of order 7.

« If G is a finite group of order p where p is prime. If a # e,
then G = (a).

HOMOMORPHISMS

Definition. Let (G, *) and (H, %) be two groups. A

function ¢: G — H is called a group homomorphism if
d(z *y) = d(z) * ¢(y)

forallz,y € G.

Note:

+ Composing homomorphisms gives a homomorphism.

* dleq) =en-

co(g™h) = ¢(g) "

* The image ¢(G) is a subgroup of (H, x).

« Let H' be a subgroup of H. Then ¢—1(H') is a subgroup

of G.

Definition. The kernel of ¢ is defined as
ker¢ = eyg)={g € G:¢(9) =en}.
Note:
* The kernel K is a normal subgroup of G.
* For all go € G, we have
{9 € G:¢(9) = ¢(g0)} = goK = Kgo.
* Thus ¢ injective < ker¢ = {eg}.

Definition. Let K = ker ¢ be the kernel of ¢. We define
Sub(G, K) = {G’ : G’ subgroup of G, K C G} and
Sub(H) = {H' : H’' subgroup of H}.

We define a function ®: Sub(G, K) — Sub(H) by

®(G') = ¢(G") where G’ € Sub(G, K).

« If ¢ is a surjective homomorphism, then @ is a bijection.
« Verify that ® is well-defined.

NORMAL SUBGROUPS

Definition. Let G be a group and N be a subgroup. Then
N < Gifforaln € Nandg € G, gng~' € N.
* N;es Ni is a normal subgroup of G.
« For every subgroup G’ of G, N N G’ is a normal
subgroup of G.
The following statements are equivalent:
(i) The subgroup N is normal, i.e.
VYn € N,g € G,gng—' € N.
(iiy Forallg € G,gNg—! = N.
(i) Forallge G,gN = Ng.
(iv) Forallg,g’ € G,(gN)(¢'N) = (99')N.

Simple groups

Definition. A group G is simple if its normal subgroups
are only its trivial normal subgroups {e} and G.

* For n # 4, the alternating group A4 is simple.

QUOTIENT GROUPS

Definition. Let (G, *) be a group and let K be a normal
subgroup. Then define a binary operation ¢ on G/ K by
(91K) ¢ (92K) = g192K.
(i) (G/K, o) forms the quotient group of G by K.
(i) The function 7: (G, *) — (G/ K, ¢) defined by
w(g) = gK is a surjective group homomorphism.
(i) kerm = K.

ISOMORPHISM THEOREMS

First Isomorphism Theorem

Let ¢: (G, *) — (H,*) be a surjective group
homomorphism. Let K be the kernel of ¢. Then the
function ¢: (G/K,©) — (H,*) given by

(9K) = ¢(9)

is a well-defined group isomorphism. (In general, if ¢ is not
surjective, we can simply replace H by the image ¢(G)).

G—°* L H
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Second Isomorphism Theorem

Let G be a group, M be a subgroup of G, and K be a normal

subgroup of G. We need two propositions:

* MK = KM anditis a subgroup of G.

« The function ¢: M — MK /K definedby ¢(m) = mKisa
surjective group homomorphism.

« The kernel of ¢ is M N K (In particular it is a normal subgroup of
M). Then,

M/(MNK)~(MK)/K.

« This is a result of the First Isomorphism Theorem, as M K/ K is

isomorphicto M/ ker ¢ = M /M N K.

Third Isomorphism Theorem

Let G be a group, and M, K be normal subgroups of G such that
K C M. Then M/K is a normal subgroup of G/ K and

(G/K)/(M/K) ~ G/M.

« The condition K C M is not very important for otherwise, we
replace K by M N K which is a normal subgroup of G contained
in M.

MORE NUMBER THEORY
Ifn =1, thenwe set (1) = 1. If n > 2, then
P(n)={z€Z:0<z<n,ged(z,n) =1}

« The pair (®(n), *) is a group, where x denotes multiplication
module n.

Euler’s totient function
Let ¢ (n) denote the number of elements in ®(n).

Euler’s Theorem
Suppose ged(z, n) = 1. Then

27 =1 (mod n).

Product formula i
Suppose n = p;'p,2 ... p,* isa prime factorization. Then

(-2 (-2 (-3)

= e(P1M)e(P3?) - w(*).

AUTOMORPHISM GROUPS

Definition. Anisomorphism ¢: G — G is called an
automorphism of G. We denote the set of automorphism of G by

Aut(G) = {¢: G — G : ¢ is an isomorphism.}
* The pair (Aut(G), o) forms a group.
Definition. Let g € G, then ¢,: G — G given by

bg(x) = grg™!

is an inner automorphism of G. Let Inn(G) = {¢4 : g € G} be
the set of inner automorphism.
» Inn(G) < Aut(G).

The map T': G — Inn(G) given by T'(g) = ¢, is a surjective
group homomorphism whose kernel is the center of the group

Z(G)={z€ G:gz=zgforallg € G}.
By the first isomorphism theorem, we have

G/Z(G) ~ Inn(G).

SYLOW THEOREMS

Notation

Suppose p° divides n but p°*? does not divide n.
We write p©||n.

Alternatively n = p®m where p  m.

Definition. Let G be a finite group of order n, and p be a prime
divisor of n. Let H be a subgroup of order p©. Then H is called a
p-subgroup of G. If p©||n, then H is called a Sylow p-subgroup of
G.

First Sylow Theorem
Let G be a group of order n, and p be a prime divisor of n.
Then G contains a Sylow p-subgroup.

Corollary
If p¢|n, then G contains a subgroup of order p<.

Definition. Let P be a subgroup of G. Let g € G. Then gPg~ ' is

a subgroup of G called a conjugate of P.

* Let P be a Sylow p-subgroup. Then a conjugate ng’1 isalso a
Sylow p-subgroup.

Theorem
Let G be a group of order n. Let { Py, Pa, ..., P.} be all the
distinct conjugates of a Sylow p-subgroup P = P;.

(i) Let Q be a p-subgroup of G. Then Q C P; for some

ie{l,...,r}
(i) If Q is a Sylow p-subgroup of G, then Q = P; for some
e {l,...,r}.

(iii) Let r denote the number of Sylow p-subgroups of G. Then

r =1 (mod p) and
r divides [G : P].

Corollary

Let P be a Sylow p-subgroup of a finite group G. Then P is a
normal subgroup if and only if P is the unique Sylow p-subgroup of
G.
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